

EFFICIENT USE OF WATER RESOURCES IN SPAIN: Challenges & Opportunities.

Esteban Henao esteban.henao@agrisat.es

Content and Structure

- 1. Introduction
- 2. Overview of Water Resources in Spain
- 3. Agricultural sector: Strengths and Weaknesses
- 4. Policy and Legal Framework
- 5. Opportunities for Efficient Water Management in the agricultural sector
- 6. Collaboration and Stakeholder Engagement
- 7. Conclusion

1. Introduction

- By 2030, there will be a 40% shortfall between water demand and supply.
- Water scarcity, hydrological uncertainty, and extreme weather events
- Feeding 10 billion people by 2050 requires a 50% increase in agricultural production and a 15% increase in water withdrawals.
- Over 40% of the world's population lives in water-scarce areas.
- Climate change intensifies the situation.
- Transboundary basins and aquifer systems.

The World Bank, 2022.

Improved water resource management, institutional strengthening, and infrastructure development are necessary to enhance water security!!!

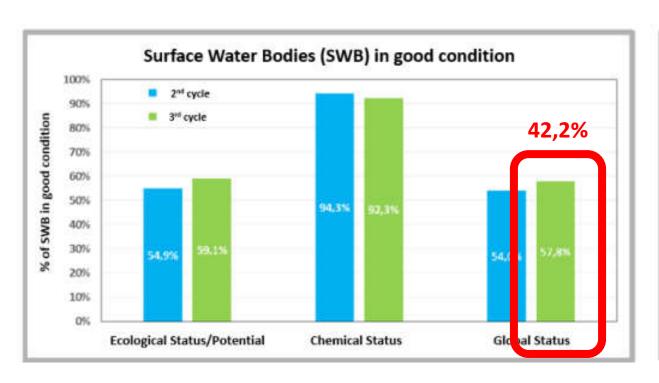
2. Overview of Water Resources in Spain

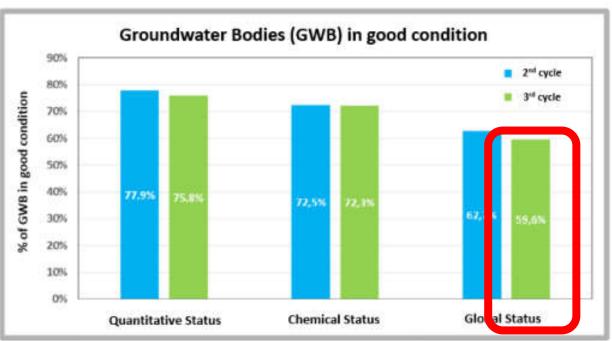
High levels of water stress due to its:

- Low level of available renewable water resources
- High level of high-water consumption per inhabitant

Water Stress Index. Source: PwC, 2018. EUROSTAT.

Spain has the highest *Water Stress Index* of the large European countries (33%). <u>In addition, this situation has not changed in the last 30 years.</u>

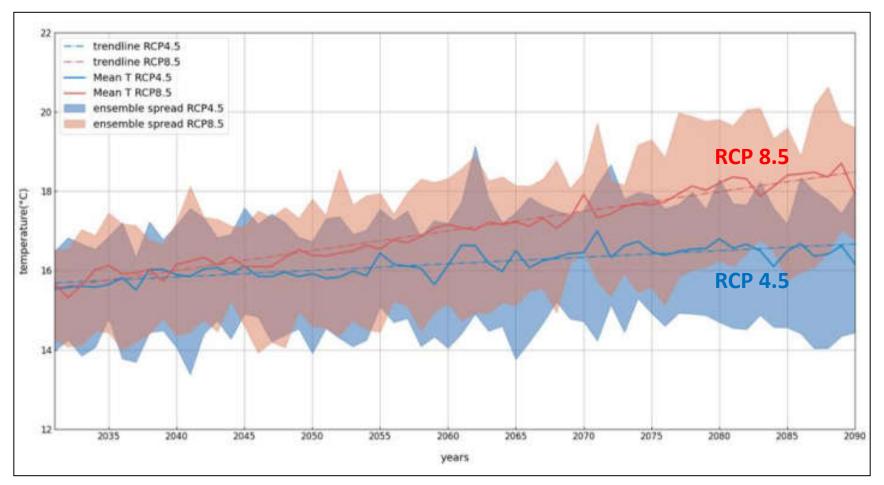




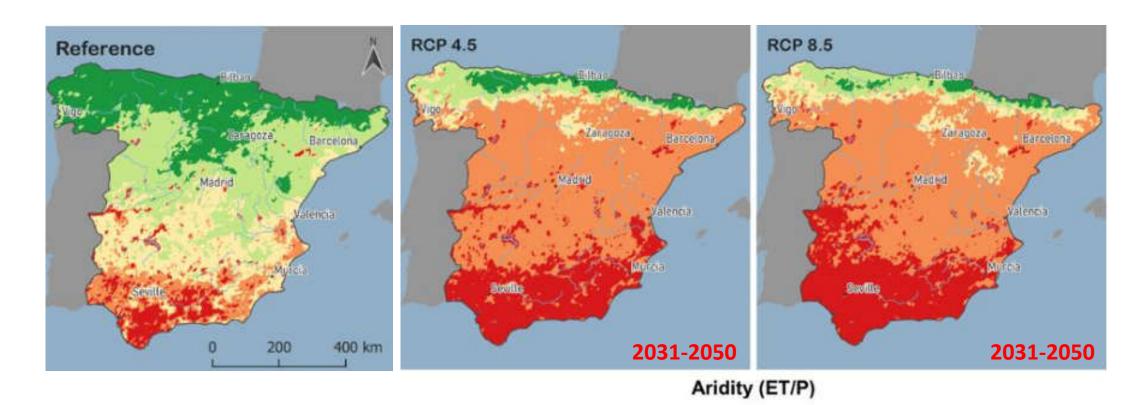
2. Overview of Water Resources in Spain

40,4%

Status of Surface (left) & Groundwater (right) in Spain. Source: MITECO, 2022.



2. Overview of Water Resources in Spain: Future Scenarios



2. Overview of Water Resources in Spain: Future Scenarios

Risk indicators with RCP4.5 & RCP8.5: Aridity. Rf period: 1986-2005. Source: Results presented within the framework of the REXUS project by DRAXIS SL, 2022.

Hyper humid

Humid

Dry sub-humid

Semi-arid

2. Overview of Water Resources in Spain

Delta del Ebro

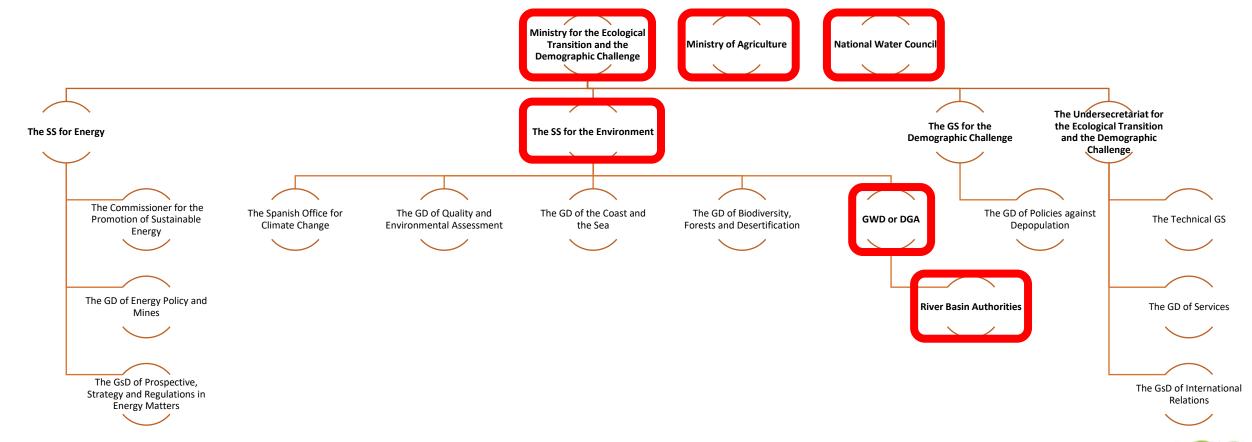
Albufera de Valencia

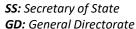
Mar Menor

Tablas de Daimiel

Doñana

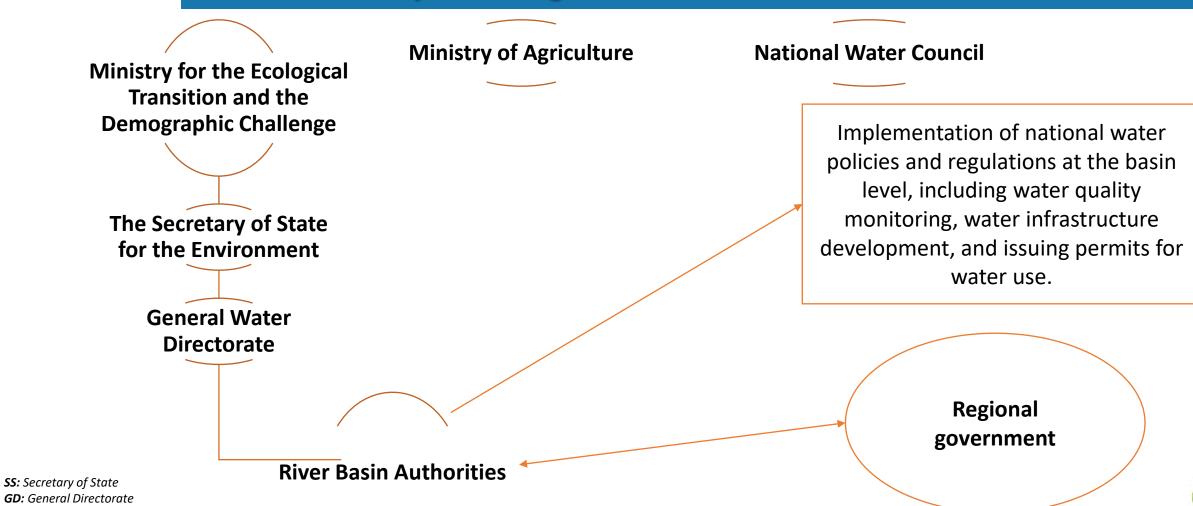
3. Agricultural sector: Strengths & Weaknesses


Typology	Strengths	Weaknesses
Economical	Relevance sector in the economy and the	Dependence on the CAP and limited access to sources of
	society	financing
	Diversified agricultural production	Low R&D effort
	Export capacity	High production costs (e.g., energy)
Social	Experienced farmers	Low social appreciation of the agricultural profession
	Potential to generate employment	Low level of income
	Population with high levels of education	Lack of generational turnover
		Agriculture abstractions: 65%. Sometimes Non authorized
	la consecution of an income	Water pollution
Environmental	Increased consumer appreciation of environ. friendly production	Flooding & Droughts / High levels of aridity
		Temperature increase
		Generation and spread of resistance to plant health
		products



4. Policy and Legal Framework

GDW: General Water Directorate


GS: General Secretariat **GsD:** General Sub-Directorate

4. Policy and Legal Framework

GDW: General Directorate of Water

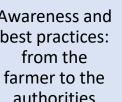
GS: General Secretariat **GsD:** General Sub-Directorate

4. Policy and Legal Framework

Main policies and regulations for water and agriculture. Source: MITECO, 2021.

Water	Agriculture
Water Law (Ley de Aguas)	Common Agricultural Policy (CAP)
River Basin Management Plans (Planificación Hidrológica)	Water Use and Allocation Regulations
Water Pricing and Tariffs	Environmental Regulations and Cross- Compliance
Environmental Protection and Conservation	Good Agricultural Practices (GAP)
Drought and Water Scarcity Management	Agri-Environmental Schemes
Water Allocation and Permits	Irrigation Modernization Programs
Water Infrastructure Development	Organic Farming Regulations

[➤] There is no single model for effective water governance! → Governance systems must be tailored to the social, economic and cultural particularities of each country.

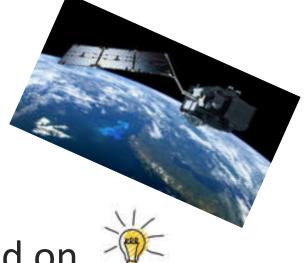


IRRIGATION: Main water use in the EU (agriculture)

Water scarcity and drought are becoming increasingly frequent phenomena.

Need for better water management and monitoring of water resources

Awareness and best practices: from the farmer to the authorities



How can we improve water management?

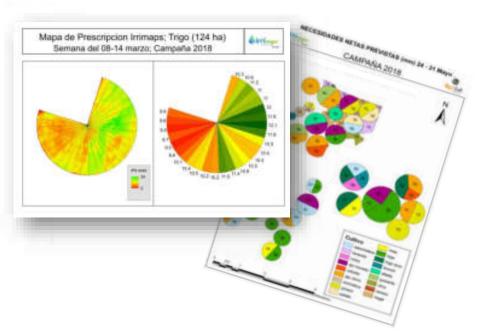
We offer solutions through services based on remote sensing and precision agriculture!

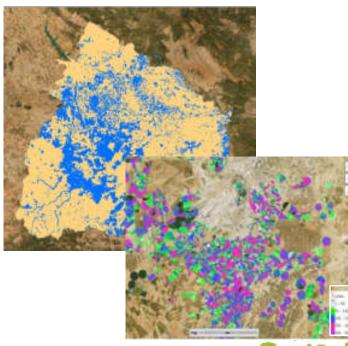
"Connecting sky...

....and Land"

CROP WATER MANAGEMENT

- Water Requirements
- Irrigation
- Water Allocation
- Hydrological Planning



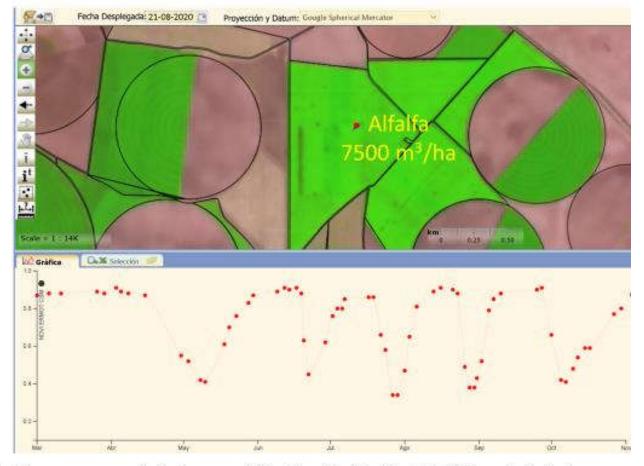

Agrometeorological Parameters

Farmers → Water managers

EVOLUCIÓN DE LAS SUPERFICIES EN REGADÍO, EN EL ÁMBITO DEL ACUÍFERO DE LA MANCHA ORIENTAL, MEDIANTE TÉCNICAS DE TELEDETECCIÓN

ERMOT 1998- actual

IN THE AREA OF THE EASTERN
MANCHA AQUIFER USING REMOTE
SENSING TECHNIQUES



ERMOT Project; 1998-current
Earth Observation
for (ground)Water
Management

Time series of images for monitoring crops, supporting field inspection and mapping irrigated areas

Key Success Factors:

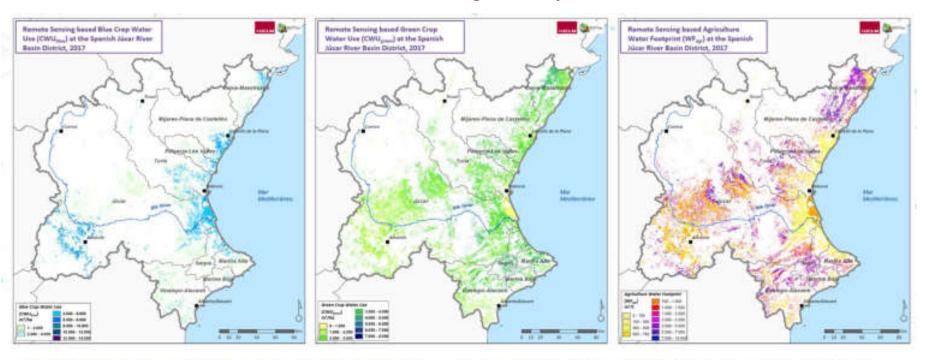
Participatory community tool; Technology available // mature for operations; Commitment of users;

Free images of a constellation of satellites are currently being used: Sentinel2a; Sentinel2b (10 m pixel sixe), a

Copernicus program of the European Commission,

For more than 25 years, the Júcar River Basin Authority, the Central Irrigation Board of Eastern La Mancha, the University of Castilla La Mancha, and AgriSat, have worked together within the framework of the ERMOT project, to assign water rights and for the monitoring of irrigated areas using remote sensing techniques.

Confederación Hidrográfica del Júcar, O.A.



Water Accounting & Footprints

Remote Sensing based Water Accounting and Footprint:

- Spatial Extent: Júcar River Basin (42,735 km²)
- Time period: years 2017 (dry) & 2020 (humid)

- Satellite: Sentinel 2 A&B (spatial resolution 10x10m)
- Water Accounting products: CWU_{blue} & CWU_{green}
- Water Footprint products: WF_{green}, WF_{blue} & WF_{agr}

https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Documentos/PHJ2227 Anejo03 UsosDemandas 20220329.pdf

6. Collaboration and Stakeholder Engagement

7. Conclusions

☐ Governance systems must be tailored to the social, economic and cultural particularities of each country.
☐ Incorporate scientific criteria and involve farmers, foster transparency focusing on building capacity,
adaptability, and resilience.
☐ Develop models to assess masses at risk and Decision-making processed based on the integration of
remote sensing data on models.
☐ Explore economic instruments to incentivize responsible resource management and conservation.

PROJECT PARTNERS

Centre for Agricultural Research and Economics (Italy)

University of Padua -Department of Land, Environment, Agriculture and Forestry (Italy)

Water Research Institute of the National Research Council (Italy)

ETIFOR S.R.L. (Italy)

AgriSat Iberia, S.L. (Spain)

EcoAdapta (Spain)

Soil and Water Resources Institute of the Hellenic Agricultural Organization "DEMETER" (Greece)

Technical University of Crete (Greece)

Galilee Research Institute Ltd. (Israel)

National Agricultural Research Center (Jordan)

Draxis Environmental S.A. (Greece)

International Agricultural Research and Training Centre (Turkey)

Uluslararasi Arastirma Gelistirme Muhendislik Yazilim Ve Danismanlik Limited Sirketi (Turkey)

THANKS FOR YOUR ATTENTION!

This presentation reflects only the author's view and the PRIMA Foundation is not responsible for any use that may be made of the information it contains

