

Improved adoption of drought and salinity tolerant forages and evaluation of cereal/legume mixtures and monocultures to drought and salinity.

NARC-Pilot
Deir-Alla station
Middle Jordan Valley

Dr. Luna Al-Hadidi Eng. Rawad Sweidan

Deir-Alla Research Station-Central Jordan Valley.

Objective:

 The main objective of conducting this study is to evaluate the cultivation of Alfalfa crop which consumes high amounts of irrigation water. This will be in comparison with the use of crop rotations of both summer and winter crops in terms of water saving, economic and environmental aspects.

Workplan of the Experiment:

- The study was carried out to measure the impact of irrigation with "mixed water quality" on dry matter production, nutritive value, WUE and interspecies competition of cereal/legume mixtures and monocultures and the quality of the silage produced.
- LENSES will bring innovative solutions combining water use efficiency with NCW resource and food security. Alfalfa, barley and vetch monocultures will be planted in winter season, while, in summer sesbania and sorghum will replace the barley and vetch.
- Soil moisture sensors will be installed within the experiment and the amount of irrigation will be determined using automated irrigation system.
- Irrigation level for all crops will be fixed at 100% of crop water requirements.

Crops: Winter and summer

Crops						
Winter: Barley	Vetch					
Summer: Sesbania	Sorghum	Alfalfa				

Selection of the experimental site

Silage making and evaluation:

Activity 1: Silage making

- All plots will be harvested and chopped using drive shaft chopper with chopping rate between 3-5 cm. Then each treatment will be mixed separately, and samples will be collected for nutritive value analysis and the chopped crop (treatment) will be compressed using hydraulic compressor in a plastic barrels for silage making.
- Molasses will be added during the compressing process (4% of fresh weight) as a source of fermentable carbohydrate for bacteria.
- After 45 days' samples will be collected from each treatment and analyzed using both proximate analysis and NIR technology.

- Proximate analysis includes; moisture, ash, crude protein, neutral detergent fiber (NDF), acid detergent fiber (ADF) and ether extract.
- Data were collected from pilot to measure biomass produced for each forage plot to evaluate economic value. Different proportions of intercropped silage were made in plastic barrels to ensile the mixed crop.
- For summer crops, 5 intercropped silages were made based on the proportion of sorghum (Sg) and sesbania (Sb) as follow: 0:100, 25:75, 50:50, 75:25, 100:0 (Sg: Sb)

Silage Making Process

This project is part of the PRIMA programme supported by the European Union. GA n° [2041] [LENSES] [Call 2020 Section 1 Nexus IA]

Crop-Alfalfa & Sorghum-Analysis: Forage quality

Feed Analysis							
Crop	Moisture	Crude Protein	Crude Fiber	Ether Extract	NDF	ADF	ASH
Sorgham	80.822	11.264	33.446	3.178	63.824	25.542	13.198
Sesbania	65.72	14.722	24.868	8.946	33.86	27.036	6.818
Alfalfa	53.146	17.928	-	-	-	-	-
Silage	Moisture	Crude Protein	Crude Fiber	Ether Extract	NDF	ADF	ASH
	Wioistare						
Sorgham 100	80.64	11.18	32.95	3.09	63.52	25.25	13.17
Sorgham 100 Sorgham 75		11.18 11.96	32.95 31.28	3.09 4.67	63.52 56.26	25.25 25.89	13.17 11.43
	80.64						
Sorgham 75	80.64 76.8	11.96	31.28	4.67	56.26	25.89	11.43

Crop-Alfalfa-Analysis: Ash-End of 2022

Te	est Name	Cd	Со	Cr	Cu	Fe	Mn	Ni	Pb	Zn		
	Unit	ppm	ppm	ppm	ppm	ppm	ppm ppm ppm ppm					
Lab. No.	Field No.					Result						
390	Alfalfa cut 1	<0.0012	<0.011	<0.0054	10.6	335	48.0	0.70	<0.013	21.7		
391	Alfalfa cut 2	<0.0012	<0.011	<0.0054	7.5	312	62.4	0.90	<0.013	28.7		
392	Alfalfa cut 3	<0.0012	<0.011	<0.0054	20.3	314	40.9	0.75	<0.013	31.1		
393	Alfalfa cut 4	<0.0012	<0.011	<0.0054	8.5	300	50.9	<0.004	<0.013	29.0		
394	Alfalfa cut 5	<0.0012	<0.011	<0.0054	7.8	167	37.6	<0.004	<0.013	20.3		

Soil Chemical Analysis: End of 2022

Lab No.	Location	Depth	Extract		ppm			m	meq/L			Total	
Lab IVO.	Location	Deptil	рН	EC(dS/m)	P	K	Ca	Mg	Na	Cl	CO ₃	HCO ₃	cations
2022/746	Sorghum	0-15	7.7	8.03	42.6	1000	23.3	25.9 0	29.67	50.00	0.00	7.00	78.87
2022/747	Sorghum	15-30	7.7	5.23	44.6	1250	14.2 0	18.9 0	17.93	32.50	0.00	5.00	51.03
2022/748	Sesbania	0-15	7.4	10.49	18.6	1000	37.9 0	26.1 0	39.86	72.50	0.00	9.00	103.86
2022/749	Sesbania	15-30	7.4	6.63	16.2	1000	20.0	21.0	24.80	45.00	0.00	6.00	65.80
Lab No.	Pom												
Lab No.	Cd	Со	C	Cr	Cu	Fe		Mn		Ni	Pb		Zn
2022/746	0.024	0.024	0.0	26	0.599	0.707		0.342	C).219	0.36	5	6.85
2022/747	0.016	0.029	0.0	25	0.741	0.622		0.504	С).281	0.40	1	7.30
2022/748	0.014	0.009	0.0	10	0.626	0.572		0.365	C).286	0.300	5	10.37
2022/749	0.015	0.020	0.0		0.605	0.548		0.449	C).258	0.36	4	39.35
%									Texture				

	<u> </u>		Texture
Clay	Silt	Sand	
53.5	40.5	6.0	Silty clay
45.8	36.9	17.3	Clay
69.3	13.7	17.0	Clay
52.7	27.8	19.5	Clay

Activity 2: Smallholder farmers' workshop

- Three workshops for smallholder farmers were conducted for 20 participants from which four females forage producers were participated.
- A 2-days training workshop were conducted to share knowledge with farmers at pilot site theoretically and practically.

Activity 3: Preparation for winter crops

 Barley replaced sesbania and vetch replaced the sorghum to ensure the crop rotation for 2022/20023 winter season, harvest will be in May 2023.

 The experiment was planted on 17/1/2023.

Main Findings-On-going

- Silage quality will be evaluated at NARC lab and results will be available by the end of January.
- Water analysis; mixed water from King Talal Dam (KTD) was used for irrigation and salinity
 quality parameter were range from 2 to 3 dS/m for winter and summer season, respectively.
- Soil analysis; Soil nutritional analysis showed that its of good fertility level but with moderate salinity.
- Sorghum productivity under pilot condition were 125-ton green forage per hectare while
 Sesbania productivity were 48-ton of green forage per hectare.

Team Members:

Dr. Naem Mazahreh Irrigation, Water Management.

Dr. Luna Al Hadidi Irrigation-Nonconventional water resources.

Eng. Rawad Swedan Animal Production.

Dr. Nabeel Bani Hani Irrigation, Soil Chemistry.

Dr. Sami Awabdeh Animal Production.

THANKS FOR YOUR ATTENTION!

This presentation reflects only the author's view and the PRIMA Foundation is not responsible for any use that may be made of the information it contains

Contact(s):

